Existing methods for focusing and imaging through strongly scattering materials are often limited by speed, the need for invasive feedback, and the shallow depth of penetration of photons into the material. These limitations have motivated the present research into the development of a new iterative phase optimization method for improving transmission of light through a sample of strongly scattering material. A new method, based on the detection of back-scattered light combined with active (phase-only) wavefront control was found to be partially successful, decreasing the power of backscattered incident light at 488 nm wavelength by approximately 35% in a 626 μm thick sample of Yttria (Y2O3) nanopowder (mean particle size 26 nm) in clear epoxy with transport mean free path length ~116 μm. However, the observed transmitted power did not show simultaneous improvement. The conclusion was reached that scattering to the sides of the sample and polarization scrambling were responsible for the lack of improved transmission with this method. Some ideas for improvement are discussed in the thesis. This research subsequently led to the development of a lensless holographic imaging method based on a rotating diffuser for statistical averaging of the optical signal for overcoming speckle caused by reflection from a rough surface. This method made it possible to reduce background variations of intensity due to speckle and improve images reflected from rough, immobile surfaces with no direct path for photons between the object and camera. Improvements in the images obtained with this technique were evaluated quantitatively by comparing SSIM indices and were found to offer practical advances for transmissive and reflective geometries alike.
【 预 览 】
附件列表
Files
Size
Format
View
Holographic Imaging and Iterative Phase Optimization Methods for Focusing and Transmitting Light in Scattering Media.