学位论文详细信息
Analysis of Reactor Simulations Using Surrogate Models.
surrogate models;Nuclear Engineering and Radiological Sciences;Engineering;Nuclear Engineering and Radiological Sciences
Yankov, ArtemLee, John C. ;
University of Michigan
关键词: surrogate models;    Nuclear Engineering and Radiological Sciences;    Engineering;    Nuclear Engineering and Radiological Sciences;   
Others  :  https://deepblue.lib.umich.edu/bitstream/handle/2027.42/111485/yankovai_1.pdf?sequence=1&isAllowed=y
瑞士|英语
来源: The Illinois Digital Environment for Access to Learning and Scholarship
PDF
【 摘 要 】

The relatively recent abundance of computing resources has driven computational scientists to build more complex and approximation-free computer models of physical phenomenon. Often times, multiple high fidelity computer codes are coupled together in hope of improving the predictive powers of simulations with respect to experimental data. To improve thepredictive capacity of computer codes experimental data should be folded back into the parameters processed by the codes through optimization and calibration algorithms. However, application of such algorithms may be prohibitive since they generally require thousands of evaluations of computationally expensive, coupled, multiphysics codes. Surrogates modelsfor expensive computer codes have shown promise towards making optimization and calibration feasible.In this thesis, non-intrusive surrogate building techniques are investigated for their applicability in nuclear engineering applications. Specifically, Kriging and the coupling of the anchored-ANOVA decomposition with collocation are utilized as surrogate building approaches. Initially, these approaches are applied and naively tested on simple reactor applicationswith analytic solutions. Ultimately, Kriging is applied to construct a surrogate to analyze fission gas release during the Risø AN3 power ramp experiment using the fuel performance modeling code Bison. To this end, Kriging is extended from building surrogates for scalar quantities to entire time series using principal component analysis. A surrogate model is built for fission gas kinetics time series and the true values of relevant parameters are inferred by folding experimental data with the surrogate. Sensitivity analysis is also performed on the fission gas release parameters to gain insight into the underlying physics.

【 预 览 】
附件列表
Files Size Format View
Analysis of Reactor Simulations Using Surrogate Models. 1879KB PDF download
  文献评价指标  
  下载次数:18次 浏览次数:6次