学位论文详细信息
Feedback Control Design for MARLO, a 3D-Bipedal Robot.
ATRIAS;MARLO;Underactuated;Hybrid Zero Dynamics;NURB Curves;Bipedal Robot;Mechanical Engineering;Engineering;Mechanical Engineering
Ramezani, AlirezaHulbert, Gregory M. ;
University of Michigan
关键词: ATRIAS;    MARLO;    Underactuated;    Hybrid Zero Dynamics;    NURB Curves;    Bipedal Robot;    Mechanical Engineering;    Engineering;    Mechanical Engineering;   
Others  :  https://deepblue.lib.umich.edu/bitstream/handle/2027.42/102339/aramez_1.pdf?sequence=1&isAllowed=y
瑞士|英语
来源: The Illinois Digital Environment for Access to Learning and Scholarship
PDF
【 摘 要 】

This work develops feedback controllers for bipedal walking in 3D on level ground, both in simulation and experimentally.MARLO is a new robot that has been designed for the study of 3D-bipedal locomotion, with the aim of combining energy efficiency, speed, and robustness with respect to natural terrain variations in a single platform. The robot is highly underactuated, having six actuators and, in single support, 13 degrees of freedom. Its sagittal plane dynamics are designed to embody the spring loaded inverted pendulum (SLIP), which has been shown to provide a dynamic model of the body center of mass during steady running gaits in a wide diversity of terrestrial animals. A detailed dynamic model is used to optimize walking gaits with respect to the cost of mechanical transport (cmt), a dimensionless measure of energetic efficiency.A feedback controller is designed that balances the robot during the quiet standing mode, and another feedback policy is developed such that the robot can take a transition step from quiet standing to walking. A feedback controller is designed that stabilizes steady-state 3D walking gaits, despite the high degree of underactuation of the robot. These controllers are combined through a state machine that handles switching among the three controllers controllers. In experiments on planarized (2D) and untethered (3D)versions of the robot with point feet and passive feet (prosthetic feet) walking over flat ground or on a ramp with a shallow slope, the adaptability of the designed controller to the environment (planar or untethered, flat ground or ramp), and to the morphology of the robot (point feet or passive feet), is demonstrated. In experiments on a planarized version of the robot with passive feet, the controller yielded stable walking after starting from quiet standing, autonomously and without any intervention from the operator. In experiments on an untethered (3D) version of the robot, the controller was able to balance the robot over flat ground or on a shallow ramp during the quiet standing mode. In addition, the controller yielded six-untethered ``human-like;;;; steps after starting from quiet standing, autonomously without any intervention from the operator.

【 预 览 】
附件列表
Files Size Format View
Feedback Control Design for MARLO, a 3D-Bipedal Robot. 11781KB PDF download
  文献评价指标  
  下载次数:24次 浏览次数:23次