学位论文详细信息
Estimating causal effects with non-experimental data
Non-experimental data;Causal Inference;Survey Weights;Complex Survey Data;Measurement Error;Model Misspecification;ATT;PATT;SATT;ATE;PATE;SATE;Biostatistics
Lenis, DavidChan, Kitty S. ;
Johns Hopkins University
关键词: Non-experimental data;    Causal Inference;    Survey Weights;    Complex Survey Data;    Measurement Error;    Model Misspecification;    ATT;    PATT;    SATT;    ATE;    PATE;    SATE;    Biostatistics;   
Others  :  https://jscholarship.library.jhu.edu/bitstream/handle/1774.2/58620/LENIS-DISSERTATION-2017.pdf?sequence=1&isAllowed=y
瑞士|英语
来源: JOHNS HOPKINS DSpace Repository
PDF
【 摘 要 】

In this manuscript we seek to relax some of the traditional assumptions associated with the estimation of causal effects. In particular, we relax the assumption that all confounders are measured without error and the assumption that the observations in the sample are independent and identically distributed. Furthermore, we explore the impact of model misspecification in the estimation of population causal effects.

【 预 览 】
附件列表
Files Size Format View
Estimating causal effects with non-experimental data 1968KB PDF download
  文献评价指标  
  下载次数:25次 浏览次数:30次