学位论文详细信息
Rare Events Prediction: Rogue Waves and Drags
Rogue Wave;Oceanic Wave;Fluid Flow;Multicanonical Monte Carlo;Rare Event
Tong, Mingadvisor:Yevick, David ; affiliation1:Faculty of Science ; Yevick, David ;
University of Waterloo
关键词: Fluid Flow;    Multicanonical Monte Carlo;    Rare Event;    Master Thesis;    Rogue Wave;    Oceanic Wave;   
Others  :  https://uwspace.uwaterloo.ca/bitstream/10012/14055/3/Tong_Ming.pdf
瑞士|英语
来源: UWSPACE Waterloo Institutional Repository
PDF
【 摘 要 】

Rogue waves are rare events with unusually large wave amplitudes. In this thesis the multicanonical procedure is applied to the one-dimensional nonlinear Schrödinger equation in conjunction with a high order finite difference solution procedure to determine the probability distribution function of rogue wave power and heights. The analysis demonstrates a logarithmic dependence of the slope of the probability distribution function on the nonlinearity coefficient at large heights. The results of the multicanonical procedure helps explain the mechanism of rogue waves and confirms that the nonlinearity generates rogue waves.Small deformation of an obstacle in fluid flows can in extreme cases result in anomalous drag coefficients. A multicanonical procedure is applied to the two-dimensional Navier-Stokes equation in conjunction with the lattice Boltzmann method to determine the probability distribution functions of the drags generated by a two-dimensional square/rectangular obstacle in quasi-random input flow patterns and for random surface roughness. The results demonstrate that the multicanonical method can estimate the probability distribution function in low-probability regions with far less computational effort than standard techniques.

【 预 览 】
附件列表
Files Size Format View
Rare Events Prediction: Rogue Waves and Drags 9006KB PDF download
  文献评价指标  
  下载次数:33次 浏览次数:49次