Vision and audition are the two best understood modalities which humans use to interact with the outside world. These modalities can provide highly precise spatial and temporal information. Thus, the field of human-computer interface design has focused much of their study and design on these modalities. On the other hand, the sense of touch has been largely ignored despite the fact that it is an essential part of human ability to interact with the environment. We are interested to identify key findings on how to use tactile technology effectively to design and fabricate a tactile interface.We intend to design a wearable tactile interface which can assist Unmanned Aerial Vehicles (UAV) operators in supervisory control and monitoring tasks. Tactile displays are usually comprised of vibratory stimulators which are arranged in specific formation based on the application of the display. Quantitative properties of a vibrating tactor which was used as the vibratory stimulator in our tactile interface were investigated and evaluated in this study. We executed a series of experiments to investigate the intensity of vibrations that the vibrating tactor can generate when it is being activated through different electrical signals. Driving signals were different in terms of waveform, frequency and amplitude. By applying the outcomes of our experiments, and using the available guidelines for the design of tactile displays, we proposed some methods for displaying flight dynamics (Roll, Pitch and Yaw) of a UAV through a tactile display which is structured in form of a vest. Due to the relative infancy of this branch of information presentation, and also the lack of thorough discussion within the scientific community we need to execute further experiments to evaluate the performance of the suggested tactile display.
【 预 览 】
附件列表
Files
Size
Format
View
A Vibrotactile Display Design, evaluation and Fabrication