学位论文详细信息
Quantitative Modelling of the Shifts and Splitting in the IR Spectra of SF6 in an Ar Matrix
Chemistry;Shifts;Splitting;IR Spectra
Peng, Tao
University of Waterloo
关键词: Chemistry;    Shifts;    Splitting;    IR Spectra;   
Others  :  https://uwspace.uwaterloo.ca/bitstream/10012/1278/1/t2peng2005.pdf
瑞士|英语
来源: UWSPACE Waterloo Institutional Repository
PDF
【 摘 要 】

An infrared active polyatomic molecule has several vibrational modes, each of which has a characteristic frequency. If the molecule is trapped in a matrix of perturbing atoms, those vibrational frequencies will shift, and if the vibrational mode is degenerate, the perturbation may lift the degeneracy. Such shifts and splitting are due to the dependence of the chromophore/matrix-atom interaction potential on the internal vibrational motion of the chromophore. Applying a previously-developed model for the shifting and splitting of the triply degenerate ν3 mode of SF6 perturbed by a rare gas atom, we use Monte Carlo simulations to sample the accessible equilibrium configurations of the system and to predict the associated thermally averaged perturbed IR spectra. Since theexperimental spectrum has 10 peaks while the triply degenerate ν3 mode of SF6 in a particular environment could have at most 3 peaks, the observed spectrum must be a combination of spectra for SF6 trapped in different types of lattice sites. A fit to experiment of simulated spectra generated from a family of lattice sites is then used to identify the peaks in the experimental spectrum, determine the relative importance of the various lattice sites, and semi-quantitatively reproduce the experimental spectrum.

【 预 览 】
附件列表
Files Size Format View
Quantitative Modelling of the Shifts and Splitting in the IR Spectra of SF6 in an Ar Matrix 2200KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:16次