学位论文详细信息
On the Representation Theory of Semisimple Lie Groups
Lie groups;representation theory;geometry;Pure Mathematics
Al-Faisal, Faisal
University of Waterloo
关键词: Lie groups;    representation theory;    geometry;    Pure Mathematics;   
Others  :  https://uwspace.uwaterloo.ca/bitstream/10012/5421/1/alfaisal_thesis.pdf
瑞士|英语
来源: UWSPACE Waterloo Institutional Repository
PDF
【 摘 要 】

This thesis is an expository account of three central theorems in the representation theory of semisimple Lie groups, namely the theorems of Borel-Weil-Bott, Casselman-Osborne and Kostant. The first of these realizes all the irreducible holomorphic representations of a complex semisimple Lie group G in the cohomology of certain sheaves of equivariant line bundles over the flag variety of G. The latter two theorems describe the Lie algebra cohomology of a maximal nilpotent subalgebra of Lie(G) with coefficients in an irreducible Lie(G)-module. Applications to geometry and representation theory are given.Also included is a brief overview of Schmid;;s far-reaching generalization of the Borel--Weil--Bott theorem to the setting of unitary representations of real semisimple Lie groups on (possibly infinite-dimensional) Hilbert spaces.

【 预 览 】
附件列表
Files Size Format View
On the Representation Theory of Semisimple Lie Groups 694KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:9次