学位论文详细信息
| The Normal Distribution of ω(φ(m)) in Function Fields | |
| Number Theory;Pure Mathematics | |
| Li, Li | |
| University of Waterloo | |
| 关键词: Number Theory; Pure Mathematics; | |
| Others : https://uwspace.uwaterloo.ca/bitstream/10012/3567/1/thesis8.pdf | |
| 瑞士|英语 | |
| 来源: UWSPACE Waterloo Institutional Repository | |
PDF
|
|
【 摘 要 】
Let ω(m) be the number of distinct prime factors of m.Acelebrated theorem of Erdös-Kac states that the quantity(ω(m)-loglog m)/√(loglog m) distributesnormally.Let φ(m) be Euler;;s φ-function.Erdös andPomerance proved that thequantity(ω(φ(m)-(1/2)(loglogm)^2)((1/√(3)(loglog m)^(3/2)) also distributesnormally.In this thesis, we prove these two results.We alsoprove a function field analogue of the Erdös-Pomerance Theoremin the setting of the Carlitz module.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| The Normal Distribution of ω(φ(m)) in Function Fields | 358KB |
PDF