Interpolation is the process of learning an unknown polynomial f from some set of its evaluations. We consider the interpolation of a sparse polynomial, i.e., where f is comprised of a small, bounded number of terms. Sparse interpolation dates back to work in the late 18th century by the French mathematician Gaspard de Prony, and was revitalized in the 1980s due to advancements by Ben-Or and Tiwari, Blahut, and Zippel, amongst others. Sparse interpolation has applications to learning theory, signal processing, error-correcting codes, and symbolic computation. Closely related to sparse interpolation are two decision problems. Sparse polynomial identity testing is the problem of testing whether a sparse polynomial f is zero from its evaluations. Sparsity testing is the problem of testing whether f is in fact sparse.We present effective probabilistic algebraic algorithms for the interpolation and testing of sparse polynomials. These algorithms assume black-box evaluation access, whereby the algorithm may specify the evaluation points. We measure algorithmic costs with respect to the number and types of queries to a black-box oracle.Building on previous work by Garg–Schost and Giesbrecht–Roche, we present two methods for the interpolation of a sparse polynomial modelled by a straight-line program (SLP): a sequence of arithmetic instructions. We present probabilistic algorithms for the sparse interpolation of an SLP, with cost softly-linear in the sparsity of the interpolant: its number of nonzero terms. As an application of these techniques, we give a multiplication algorithm for sparse polynomials, with cost that is sensitive to the size of the output.Multivariate interpolation reduces to univariate interpolation by way of Kronecker substitu- tion, which maps an n-variate polynomial f to a univariate image with degree exponential in n. We present an alternative method of randomized Kronecker substitutions, whereby one can more efficiently reconstruct a sparse interpolant f from multiple univariate images of considerably reduced degree.In error-correcting interpolation, we suppose that some bounded number of evaluations may be erroneous. We present an algorithm for error-correcting interpolation of polynomials that are sparse under the Chebyshev basis. In addition we give a method which reduces sparse Chebyshev-basis interpolation to monomial-basis interpolation.Lastly, we study the class of Boolean functions that admit a sparse Fourier representation. We give an analysis of Levin’s Sparse Fourier Transform algorithm for such functions. Moreover, we give a new algorithm for testing whether a Boolean function is Fourier-sparse. This method reduces sparsity testing to homomorphism testing, which in turn may be solved by the Blum–Luby–Rubinfeld linearity test.