学位论文详细信息
Phosphorylation of Complexin by PKA Regulates Activity-Dependent Spontaneous Neurotransmitter Release and Structural Synaptic Plasticity
Li, Feng ; Cho, Richard W. ; Buhl, Lauren Kaye ; Volfson, Dina ; Tran, Adrienne L. ; Akbergenova, Yulia ; Littleton, J. Troy
Elsevier/Cell Press
Others  :  http://dspace.mit.edu/openaccess-disseminate/1721.1/105584
美国|英语
来源: MIT Theses in DSpace@MIT
PDF
【 摘 要 】

Synaptic plasticity is a fundamental feature of the nervous system that allows adaptation to changing behavioral environments. Most studies of synaptic plasticity have examined the regulated trafficking of postsynaptic glutamate receptors that generates alterations in synaptic transmission. Whether and how changes in the presynaptic release machinery contribute to neuronal plasticity is less clear. The SNARE complex mediates neurotransmitter release in response to presynaptic Ca[superscript 2+] entry. Here we show that the SNARE fusion clamp Complexin undergoes activity-dependent phosphorylation that alters the basic properties of neurotransmission in Drosophila. Retrograde signaling following stimulation activates PKA-dependent phosphorylation of the Complexin Cterminus that selectively and transiently enhances spontaneous release. Enhanced spontaneous release is required for activity-dependent synaptic growth. These data indicate that SNAREdependent fusion mechanisms can be regulated in an activity-dependent manner and highlight the key role of spontaneous neurotransmitter release as a mediator of functional and structural plasticity.

【 预 览 】
附件列表
Files Size Format View
Phosphorylation of Complexin by PKA Regulates Activity-Dependent Spontaneous Neurotransmitter Release and Structural Synaptic Plasticity 1632KB PDF download
  文献评价指标  
  下载次数:3275次 浏览次数:609次