科技报告详细信息
Estimation of the ex ante Distribution of Returns for a Portfolio of U.S. Treasury Securities via Deep Learning
Foresti, Andrea
World Bank, Washington, DC
关键词: MACHINE LEARNING;    NEURAL NETWORKS;    CONVOLUTION;    LSTM;    MARKET RISK;   
DOI  :  10.1596/1813-9450-8790
RP-ID  :  WPS8790
学科分类:社会科学、人文和艺术(综合)
来源: World Bank Open Knowledge Repository
PDF
【 摘 要 】

This paper presents different deepneural network architectures designed to forecast thedistribution of returns on a portfolio of U.S. Treasurysecurities. A long short-term memory model and aconvolutional neural network are tested as the main buildingblocks of each architecture. The models are then augmentedby cross-sectional data and the portfolio's empiricaldistribution. The paper also presents the fit andgeneralization potential of each approach.

【 预 览 】
附件列表
Files Size Format View
WPS8790.pdf 1170KB PDF download
  文献评价指标  
  下载次数:18次 浏览次数:20次