This report presents results from bench-scale treatability studies conducted under site-specific conditions to optimize the polyphosphate amendment for implementation of a field-scale technology demonstration to treat aqueous uranium within the 300 Area aquifer of the Hanford site. The general treatability testing approach consists of conducting studies with site sediment and under site conditions, in order to develop an effective chemical formulation for the polyphosphate amendments and evaluate the transport properties of these amendments under site conditions. Phosphorus-31 (31P) NMR was utilized to determine the effects of Hanford groundwater and sediment on the degradation of inorganic phosphates. Static batch tests were conducted to optimize the composition of the polyphosphate formulation for the precipitation of apatite and autunite, as well as to quantify the kinetics, loading and stability of apatite as a long-term sorbent for uranium. Dynamic column tests were used to further optimize the polyphosphate formulation for emplacement within the subsurface and the formation of autunite and apatite. In addition, dynamic testing quantified the stability of autunite and apatite under relevant site conditions. Results of this investigation provide valuable information for designing a full-scale remediation of uranium in the 300 aquifer.