Prompt gamma (PG) analysis has been used to identify the presence of certain impurities in plutonium oxide, which has been stored in 3013 containers. A regression analysis was used to evaluate the trends between the count rates obtained from PG analysis and the concentration of the impurities in plutonium oxide samples measured by analytical chemistry techniques. The results of the analysis were used to obtain calibration curves, which may be used to predict the concentration of Al, Be, Cl, F, Mg, and Na in the 3013 containers. The scatter observed in the data resulted from several factors including sample geometry, error in sampling for chemical assay, statistical counting error, and intimacy of mixing of impurities and plutonium. Standards prepared by mixing plutonium oxide with CaF(sub 2), NaCl, and KCl show that intimacy mixing and sampling error have the largest influence on the results. Although these factors are difficult to control, the calibrations are expected to yield semiquantitative results that are sufficient for the purpose of ordering or ranking.