Advances in technology have enabled us to collect data from observations, experiments, and simulations at an ever increasing pace. As these data sets approach the terabyte and petabyte range, scientists are increasingly using semi-automated techniques from data mining and pattern recognition to find useful information in the data. In order for data mining to be successful, the raw data must first be processed into a form suitable for the detection of patterns. When the data is in the form of images, this can involve a substantial amount of processing on very large data sets. To help make this task more efficient, they are designing and implementing an object-oriented image processing toolkit that specifically targets massively-parallel, distributed-memory architectures. They first show that it is possible to use object-oriented technology to effectively address the diverse needs of image applications. Next, they describe how we abstract out the similarities in image processing algorithms to enable re-use in the software. They will also discuss the difficulties encountered in parallelizing image algorithms on massively parallel machines as well as the bottlenecks to high performance. They will demonstrate the work using images from an astronomical data set, and illustrate how techniques such as filters and denoising through the thresholding of wavelet coefficients can be applied when a large image is distributed across several processors.