This paper presents a study of the relationship between permeability and effective stress in tight petroleum reservoir formations. Specifically, a quantitative method is developed to describe the correlation between permeability and effective stress, a method based on the original in situ reservoir effective stress rather than on decreased effective stress during development. The experimental results show that the relationship between intrinsic permeability and effective stress in reservoirs in general follows a quadratic polynomial functional form, found to best capture how effective stress influences formation permeability. In addition, this experimental study reveals that changes in formation permeability, caused by both elastic and plastic deformation, are permanent and irreversible. Related pore-deformation tests using electronic microscope scanning and constant-rate mercury injection techniques show that while stress variation generally has small impact on rock porosity, the size and shape of pore throats have asignificant impact on permeability-stress sensitivity.