Numerical modeling of air flow and pollutant dispersion around buildings in the urban environment is a challenging task due to the geometrical variations of buildings and the extremely complex flow created by such surface-mounted obstacles. Building-scale air flows inevitably involve flow impingement, stagnation, separation, a multiple vortex system, and jetting effects in street canyons. Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL) have developed two complementary, robust computational fluid dynamics (CFD) models, FEM3MP by LLNL and HIGRAD by LANL, for such purposes. Our primary goal is to support emergency response planning, vulnerability analysis, and development of mitigation strategies for chem-bio agents released in the urban environment. Model validation is vitally important in establishing the credibility of CFD models. We have, in the past, performed model validation studies involving simpler geometries, such as flow and dispersion past a cubical building and flow around a 2-D building array. In this study, wind tunnel data for a 7 x 11 array of cubical buildings are used to further validate our models