Columbia Basin Research uses the COMPASS model on a daily basis during the outmigration of Snake River Chinook and steelhead smolts to predict downstream passage and survival. Fish arrival predictions and observations from program RealTime along with predicted and observed environmental conditions are used to make in-season predictions of arrival and survival to various dams in the Columbia and Snake Rivers. For 2008, calibrations of travel and survival parameters for two stocks of fish-Snake River yearling PIT-tagged wild chinook salmon (chin1pit) and Snake River PIT-tagged steelhead (lgrStlhd)-were used to model travel and survival of steelhead and chinook stocks from Lower Granite Dam (LWG) or McNary Dam (MCN) to Bonneville Dam (BON). This report summarizes the success of the COMPASS/RealTime process to model these migrations as they occur. We compared model results on timing and survival to data from two sources: stock specific counts at dams and end-of-season control survival estimates. The difference between the predicted and observed day of median passage and the Mean Absolute Deviation (MAD) between predicted and observed arrival cumulative distributions are measures of timing accuracy. MAD is essentially the average percentage error over the season. The difference between the predicted and observed survivals is a measure of survival accuracy.