科技报告详细信息
Flow Regime Study in a High Density Circulating Fluidized Bed Riser with an Abrupt Exit.
Mei, J. ; Shadle, L. J. ; Yuc, P. C. ; Monazam, E. R.
Technical Information Center Oak Ridge Tennessee
关键词: Fluidized bed combustors;    Gas flow;    Velocity;    Circulating systems;    Fluidization;   
RP-ID  :  DE2007915486
学科分类:工程和技术(综合)
美国|英语
来源: National Technical Reports Library
PDF
【 摘 要 】

Flow regime study was conducted in a 0.3 m diameter, 15.5 m height circulating fluidized bed (CFB) riser with an abrupt exit at the National Energy Technology Laboratory of the U.S. Department of Energy. Local particle velocities were measured at various radial positions and riser heights using an optical fiber probe. On-line measurement of solid circulating rate was continuously recorded by the Spiral. Glass beads of mean diameter 61 mm and particle density of 2,500 kg/m3 were used as bed material. The CFB riser was operated at various superficial gas velocities ranging from 3 to 7.6 m/s and solid mass flux from 20 to 550 kg/m2-s. At a constant riser gas velocity, transition from fast fluidization to dense suspension upflow (DSU) regime started at the bottom of the riser with increasing solid flux. Except at comparatively low riser gas velocity and solid flux, the apparent solid holdup at the top exit region was higher than the middle section of the riser. The solid fraction at this top region could be much higher than 7% under high riser gas velocity and solid mass flux. The local particle velocity showed downward flow near the wall at the top of the riser due to its abrupt exit. This abrupt geometry reflected the solids and, therefore, caused solid particles traveling downward along the wall. However, at location below, but near, the top of the riser the local particle velocities were observed flowing upward at the wall. Therefore, DSU was identified in the upper region of the riser with an abrupt exit while the fully developed region, lower in the riser, was still exhibiting core-annular flow structure. Our data were compared with the flow regime boundaries proposed by Kim et al. for distinguishing the dilute pneumatic transport, fast fluidization, and DSU.

【 预 览 】
附件列表
Files Size Format View
DE2007915486.pdf 378KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:16次