Simulations of plasmas with a DIII-D shape indicate plasma drifts are important at power levels near the L- to H-mode plasma transition. In addition to enhancing plasma flows in the divertor region, drifts are found to play a key role in establishing highly sheared radial electric fields in the edge of the confined plasma, for the physics of the high confinement operating mode (H-mode). Measurements of the plasma structure in the vicinity of the X-point of DIII-D indicate the importance of drifts on plasma flow between the scrape-off layer (SOL) and closed field lines. The large electric fields provide large flows around the X-point, and these are conjectured to play a role in the transition from L- to H-mode confinement. These results indicate the relevance of modeling the edge and SOL plasmas of present tokamak devices using models which include E x B,(del)B, and pressure gradient drifts. The results of simulation of specific DIII-D discharges is reported in this paper. They start with discussion of the simulation of an Ohmic discharge in Section 2, including a study of the effect of varying several operational parameters. Simulation of a higher triangularity L-mode discharge is discussed in Section, and a summary is given in Section 4.