Marshall Rosenbluth's extensive contributions included seminal analysis of the inertial fusion program. Over the last decade he avidly followed the efforts of many scientists around the world who have studied Fast Ignition, an alternate form of inertial fusion. In this scheme, the fuel is first compressed by a long pulse driver and then ignited by the short pulse laser. Due to technological advances, external energy sources (such as short pulse lasers) can focus intensity equivalent to that produced by the hydrodynamic stagnation of conventional inertial fusion capsules. This review will discuss the ignition requirements and gain curves starting from simple models and then describing how these are modified, as more detailed physics understanding is included. The critical design issues revolve around two questions: How can the compressed fuel be efficiently assembled. And how can power from the driver be delivered to the ignition region. Schemes to shorten the distance between the critical surface and the ignition region will de discussed. The status of the project is compared with our requirements for success. Future research directions will be outlined.