We analyze the probability of failure and the failure effects of the quadrupole and RF girder translation stages ('movers') in the 500 GeV CM NLC Main Linac. In order to achieve its alignment tolerances, the NLC main linac will require a large installation of remote controlled translation stages with multiple degrees of freedom. In particular, each of the 591 quads in each 250 GeV main linac will be mounted on a magnet mover with 3 degrees of freedom (x, y, roll); each of the 2304 RF structure girders in each linac will be mounted on a girder mover with 5 degrees of freedom (x, y, roll, pitch, yaw). Simulation studies of main linac operation typically assume that all movers are operational at all times, in order to limit the complexity of the simulation.