The effects of potential microbiologically influenced corrosion (MIC) on candidate packaging materials for nuclear waste containment are being assessed. Coupons of Alloy 22, the outer barrier candidate for waste packaging, were exposed to a simulated, saturated repository environment consisting of crushed rock from the repository site and a continual flow of simulated groundwater for periods up to five years. Coupons were incubated with YM tuff under both sterile and non-sterile conditions. Surfacial analysis of the biotically-incubated coupons show development of both submicron-sized pinholes and pores; these features were not present on either sterile or untreated control coupons. Quantification of these effects will help define the overall contribution of MIC to the integrity of the containment system over a period of 10,000 years.