Conventional assessments of the mechanical properties of rolled high RRR niobium plate material via tensile testing have revealed an unusually low apparent Youngs moduli and yield strength in some annealed samples. These observations motivated a series of measurements of ultrasonic velocity, a dynamic assessment of the elastic moduli. In fact, the dynamic modulus is within the range of normal for all samples tested. However, there is a trend of increasing shear velocities for shear waves propagating through the sheet thickness and polarized in the sheet transverse direction. Careful analyses of the crystallographic texture using SEM-based electron backscattered diffraction (EBSD) have revealed a subtle, but systematic change in the texture, which can explain the trend. It is further important to note that the change in texture is not observable from surface measurements using x-ray diffraction, but requires sectioning of the samples. Thus, measurements of ultrasonic velocity represent a non-destructive evaluation tool which is extremely sensitive to subtle changes in the texture of RRR niobium. Finally, there are material lot variations, which are currently attributed to the effects of impurities, such as Ta and H.