We propose a new method of computing real emission contributions to hard QCD processes. Our approach uses sector decomposition of the exclusive final-state phase space to enable extraction of all singularities of the real emission matrix elements before integration over any kinematic variable. The exact kinematics of the real emission process are preserved in all regions of phase space. Traditional approaches to extracting singularities from real emission matrix elements, such as phase space slicing and dipole subtraction, require both the determination of counterterms for double real emission amplitudes in singular kinematic limits and the integration of these contributions analytically to cancel the resulting singularities against virtual corrections. Our method addresses both of these issues. The implementation of constraints on the final-state phase space, including various jet algorithms, is simple using our approach.