The Nuclear Power Engineering Corporation (NUPEC) of Japan is performing multi-axis loading tests of reinforced concrete (RC) shear wall models. The project, which includes both static and dynamic cyclic tests, started in 1994 and is scheduled to be completed in 2004. The static tests are performed on single elements, box type and. cylindrical type structures. Both unidirectional and multidirectional loads are placed on the models during the static test phase. The dynamic tests will be performed on a shaking table for both the box type and cylindrical type structures. As part of collaborative efforts between the US and Japan the US Nuclear Regulatory Commission (NRC) and Brookhaven National Laboratory (BNL) are participating in the multi-axial cyclic static loading tests and the shaking table tests. The multi-axis loading tests are unique and will provide significant insights into the effect of out-of-plane loads on the capacity of shear wall structures. Current analysis methods use simplified assumptions and do not specifically take this effect into account. Since the fragility levels of RC shear walls are key elements in a seismic PRA of a nuclear plant, it is important to verify the methodology for determining these levels. The NUPEC tests will provide valuable data for this purpose. Pre-test predictions of the box type structure's response to the multi-axis static loading are discussed in this paper. The tests were performed by NUPEC between June and August 2000. Two models are used to make these predictions. The first is au engineering model typical of those used in current design analyses. The second is a finite element model of the structure utilizing the ANSYS computer code. In both cases cyclic load behavior into the inelastic range is considered.