Tungsten and stainless steel samples have been contaminated with deuterium and carbon to simulate deposited layers in magnetic-confinement fusion devices. Deuterium and carbon were co-deposited onto the sample surfaces using a deuterium plasma seeded with varying amounts of deuterated methane. Deuterium was also implanted into the samples in an accelerator to simulate hydrogen isotope ion implantation conditions in magnetic confinement fusion devices. Cathodic arc, or transferred-arc (TA) cleaning was employed to remove the deposits from the samples. The samples were characterized by ion beam analysis both before and after cleaning to determine deuterium and carbon concentrations present. The deuterium content was greatly reduced by the cleaning thus demonstrating the possibility of using the TA cleaning technique for removing deuterium and/or tritium from components exposed to D-T fuels. Removal of surface layers and significant reduction of subsurface carbon concentrations was also observed.