This discussion is concerned with the radar-data analysis and usage involved in the building of model orbital debris (OD) populations in the near-Earth environment, focusing on radar cross section (RCS). While varying with radar wavelength, physical dimension, material composition, overall shape and structure, the RCS of an irregular object is also strongly dependent on its spatial orientation. The historical records of observed RCSs for cataloged OD objects in the Space Surveillance Network are usually distributed over an RCS range, forming respective characteristic patterns. The National Aeronautics and Space Administration (NASA) Size Estimation Model provides an empirical probability-density function of RCS as a function of “effective diameter” (or characteristic length), which makes it feasible to predict possible RCS distributions for a given model OD population and to link data with model from a statistical perspective. The discussion also includes application of the widely used method of moments (MoM) and the Generalized Multi-particle Mie-solution (GMM) in the prediction of the RCS of arbitrarily shaped objects. Theoretical calculation results for an aluminum cube are compared with corresponding experimental measurements.