Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. Analyses of orbital transfer vehicles (OTVs), landers, and in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. Based on earlier propulsion investigations, the analyses of round trip OTV flights from Uranus and Neptune to their major moons with a 10- Megawatt electric (MWe) OTV power level and a 200 metric ton (MT) lander payload were selected. The OTV power level was based on delivering a relatively short OTV trip time and minimization of the number of lander flights. Moon base sites at Uranus and Neptune and the OTV requirements to support them will also be addressed. These analyses will include all of the major moons of Uranus and Neptune. In addition, the total masses and mass delivery schedules needed for atmospheric mining are presented.