The proposed Habitable Exoplanet (HabEx) astrophysics facility is one of four large such facilities being proposed to the 2020 decadal. It is a large telescope that is sensitive to ultraviolet, optical, and near-infrared photons. The proposed design’s overall length is on the order of 17.2 m and its maximum cross section is on the order of 5.25 X 5.25 m. The primary mirror is 4 m in diameter. A transient dynamic analysis was performed to estimate the order of magnitude of ring down time after moving the telescope and pointing at a new target for science planning purposes. Without uncertainty factors, results from a simple re-pointing maneuver indicate that primary to secondary mirror LOS errors are on the order of 10-4 pico-m after 5 minutes. Also, a frequency response analysis was performed to predict the impact of planned micro-thruster vibrations on required stability. Based on provided noise level associated with the micro-thrusters and loading assumptions and without uncertainty factors, the assessed vibrations do not impact predicted performance requirements.