A rapidly developing "flash drought" occurred over the US Northern Plains in the summer of 2017, spurred by unusually high temperatures and strong evaporative demand. The impacts of the drought included widespread reductions in rangeland and agricultural productivity that cascaded into significant economic losses. Here, we used satellite information from the NASA Soil Moisture Active Passive (SMAP) mission to clarify the nature and impact of the drought on regional vegetation growth. The model enhanced SMAP Level 4 Soil Moisture (L4SM) and Carbon (L4C) products were used with other ancillary data to examine spatial and seasonal anomalies in surface to root zone soil moisture and vegetation productivity (GPP). We find that the flash drought was triggered by a mid-July heat wave, conditioned by exceptionally low spring rainfall. The drought resulted in anomalous low soil moisture levels and regional GPP collapse, coinciding with severe (D3) to exceptional (D4) drought conditions indicated from the US Drought Monitor. The SMAP L4C GPP anomalies closely tracked reported county-level crop production anomalies for the major regional crop types, indicating generally larger productivity decline in managed croplands than surrounding natural areas. The SMAP L4 global products provide an effective indicator of vegetation growth changes and moisture-related restrictions on ecosystem productivity that are complementary with more traditional drought assessment tools.