Any cluster of parachute systems is subject to effects on performance due to interactions between the parachutes. One such interaction is the twisting of a riser from one parachute around that of another. Due to friction and relative motion between the risers, it is possible for the tension in the riser near the attach point to be different from the tension in the riser towards the suspension lines or canopy. This could result in system failure due to larger than expected loading. The Orion Capsule Parachute Assembly System (CPAS) designed and executed a test to quantify the amplification of the load in a parachute riser due to twist, rocking rate and angle, cluster size, and canopy load. The design of the testing approach, test matrix, and hardware are discussed along with results and findings.