Evolved Gas Analyses of Mudstones from the Vera Rubin Ridge
McAdam, A C ; Sutter, B ; Archer, P D ; Franz, H B ; Eigenbrode, J L ; Stern, J C ; Wong, G M ; Lewis, JMT ; Knudson, C A ; Andrejkovicova, S(NASA Goddard Space Flight Center, Greenbelt, MD, United States)
The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) rover has been essential in understanding volatile-bearing phases in Gale Crater materials. SAM’s evolved gas analysis mass spectrometry (EGA-MS) has detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases, including organic fragments, in many samples. The identity and evolution temperature of evolved gases can support CheMin instrument mineral detection and place constraints on trace volatile-bearing phases or phases difficult to characterize with X-ray diffraction (e.g., amorphous phases). For the past ~500 sols, MSL has been exploring the Vera Rubin Ridge (VRR), which exhibits a striking hematite signature in orbital remote sensing data, in order to understand the depositional and diagenetic history recorded in the rocks and how it relates to the underlying Murray Formation. Four rock samples were drilled, one from the Blunts Point Member (Duluth, DU), one from the Pettegrrove Point Member (Stoer, ST), and two from the Jura Member. The Jura Member displays differences in color, summarized as grey and red, and a key goal was to constrain the cause of this color difference and the associated implications for depositional or post-depositional conditions. To investigate, a grey (Highfield, HF) and a red (Rock Hall, RH) Jura sample were drilled. Here we will give an overview of results from SAM EGA-MS analyses of VRR materials, with some comparisons to analyses of samples of the underlying Murray.