The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has developed a laboratory transmitter and receiver prototype of a space-to-ground optical communications link. The system is meant to emulate future deep space optical communication links, such as the first crewed flight of Orion, in which the transmitted laser is modulated using pulse position modulation and the receiver is capable of detecting single photons. The transmitter prototype consists of a software defined radio, a high extinction ratio electro-optic modulator system, and a 1550 nm laser. The receiver is a scalable concept and utilizes a single-pixel array of fiber coupled superconducting nanowire single photon detectors. The transmit and receive waveforms follow the Consultative Committee for Space Data Systems (CCSDS) Optical Communications Coding and Synchronization Standard. A software model of the optical transmitter and receiver has also been implemented to predict performance of the optical test bed. This paper describes the transmitter and receiver prototypes as well as the system test configuration. System level tests results are presented and shown to align with predictions from software simulations. The validated software model can be used to in the future to reduce the design cycle of optical communications systems.