Air traffic in the United States has continued to grow at a steady pace since 1980, except for a dip immediately after the tragic events of September 11, 2001. There are different growth scenarios associated both with the magnitude and the composition of the future air traffic. The Terminal Area Forecast (TAF), prepared every year by the FAA, projects the growth of traffic in the United States. Both Boeing and Airbus publish market outlooks for air travel annually. Although predicting the future growth of traffic is difficult, there are two significant trends: heavily congested major airports continue to see an increase in traffic, and the emergence of regional jets and other smaller aircraft with fewer passengers operating directly between non-major airports. The interaction between air traffic demand and the ability of the system to provide the necessary airport and airspace resources can be modeled as a network. The size of the resulting network varies depending on the choice of its nodes. It would be useful to understand the properties of this network to guide future design and development. Many questions, such as the growth of delay with increasing traffic demand and impact of the en route weather on future air traffic, require a systematic understanding of the properties of the air traffic network. There has been a major advance in the understanding of the behavior of networks with a large number of components. Several theories have been advanced about the evolution of large biological and engineering networks by authors in diversified disciplines like physics, mathematics, biology and computer science. Several networks exhibit a scale-free property in the sense that the probabilistic distribution of their nodes as a function of connections decreases slower than an exponential. These networks are characterized by the fact that a small number of components have a disproportionate influence on the performance of the network. Scale-free networks are tolerant to random failure of components, but are vulnerable to selective attack on components. This paper examines two network representations for the baseline air traffic system. A network defined with the 40 major airports as nodes and with standard flight routes as links has a characteristic scale: all nodes have 60 or more links and no node has more than 460 links. Another network is defined with baseline aircraft routing structure exhibits an exponentially truncated scale-free behavior. Its degree ranges from 2 connections to 2900 connections, and 225 nodes have more than 250 connections. Furthermore, those high-degree nodes are homogeneously distributed in the airspace. A consequence of this scale-free behavior is that the random loss of a single node has little impact, but the loss of multiple high-degree nodes (such as occurs during major storms in busy airspace) can adversely impact the system. Two future scenarios of air traffic growth are used to predict the growth of air traffic in the United States. It is shown that a three-times growth in the overall traffic may result in a ten-times impact on the density of traffic in certain parts of the United States.