科技报告详细信息
Performance of Landsat-8 and Sentinel-2 Surface Reflectance Products for River Remote Sensing Retrievals of Chlorophyll-A and Turbidity
Kuhn, Catherine ; Valerio, Aline de Matos ; Ward, Nick ; Loken, Luke ; Sawakuchi, Henrique Oliveira ; Kampel, Milton ; Richey, Jeffrey ; Stadler, Philipp ; Crawford, John ; Striegl, Rob(Geological Survey, Water Mission Area, Boulder, CO, United States)
关键词: LANDSAT 8;    EARTH OBSERVATIONS (FROM SPACE);    RIVERS;    SURFACE PROPERTIES;    SPECTRAL REFLECTANCE;    REMOTE SENSING;    CHLOROPHYLLS;    TURBIDITY;    SEA-VIEWING WIDE FIELD-OF-VIEW SENSOR;    DATA PROCESSING;    INLAND WATERS;    ATMOSPHERIC CORRECTION;    FRESH WATER;    COLUMBIA RIVER BASIN (ID-OR-WA);    AMAZON REGION (SOUTH AMERICA);    MISSISSIPPI RIVER (US);   
RP-ID  :  GSFC-E-DAA-TN66756
学科分类:地球科学(综合)
美国|英语
来源: NASA Technical Reports Server
PDF
【 摘 要 】

Rivers and other freshwater systems play a crucial role in ecosystems, industry, transportation and agriculture. Despite the more than 40 years of inland water observations made possible by optical remote sensing, a standardized reflectance product for inland waters is yet forthcoming. The aim of this work is to compare the standard USGS land surface reflectance product to two Landsat-8 and Sentinel-2 aquatic remote sensing reflectance products over the Amazon, Columbia and Mississippi rivers. Landsat-8 reflectance products from all three routines are then evaluated for their comparative performance in retrieving chlorophyll-a and turbidity in reference to shipborne, underway in situ validation measurements. The land surface product shows the best agreement (4 percent Mean Absolute Percent Difference) with field measurements of radiometry collected on the Amazon River and generates 36 percent higher reflectance values in the visible bands compared to aquatic methods (ACOLITE (Atmospheric Correction for OLI (Operational Land Imager) 'lite') and SeaDAS (Sea-viewing Wide Field-of-View Sensor (SeaWiFS) Data Analysis System)) with larger differences between land and aquatic products observed in Sentinel-2 (0.01 per steraradian) compared to Landsat-8 (0.001 per steraradian). Choice of atmospheric correction routine can bias Landsat-8 retrievals of chlorophyll-a and turbidity by as much as 59 percent and 35 percentrespectively. Using a more restrictive time window for matching in situ and satellite imagery can reduce differences by 5–31 percent depending on correction technique. This work highlights the challenges of satellite retrievals over rivers and underscores the need for future optical and biogeochemical research aimed at improving our understanding of the absorbing and scattering properties of river water and their relationships to remote sensing reflectance.

【 预 览 】
附件列表
Files Size Format View
20190002414.pdf 6851KB PDF download
  文献评价指标  
  下载次数:20次 浏览次数:17次