Many of the aircraft concepts of the future are exploring the use of hybrid-, turbo- or all-electric propulsion systems to improve performance and decrease environmental impacts. These aircraft concepts range from small rotorcraft for urban air mobility to conventional commercial transports to large blended wing body designs. Developing the conceptual design for these vehicles presents a challenge, however, as traditional aircraft design tools often were not developed to handle these unique propulsion system architectures. Previous studies on these vehicles have therefore relied on relatively simple models of the electrical transmission and distribution system. This paper presents the development of a hybrid AC-DC load flow (or power flow) analysis capability to enhance the conceptual design of these concept vehicles. Specifically, the desire was to create a load flow analysis capability within the OpenMDAO framework that is also being used to develop a set of compatible tools for rapid optimization of conceptual designs. This load flow analysis capability is unique in its flexible object-oriented structure and implementation of analytic derivatives to facilitate the use of solvers and gradient based optimization in the design process. The developed hybrid load flow analysis capability is first verified against a published 13-bus example then used to model the electrical distribution system for a turbo-electric tiltwing aircraft.