Volcanic lava flows and/or the gas eruptions are the most common characteristics that can be remotely monitored with satellite technology in the global perspective and on different timescales. Atmospheric Sulfur Dioxide (SO2), one of the most abundant gases from volcanic eruptions apart from atmospheric common gases Carbon Dioxide and water vapor, can be directly detected by space-based sensors on satellites. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is one of the 12 Distributed Active Archive Centers (DAACs) within NASA's Earth Observing System Data and Information System (EOSDIS), which archives SO2 data sets from the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) in 1978, till the ongoing Ozone Monitoring Instrument (OMI) on NASA's EOS-Aura satellite, the Ozone Mapping Profiler Suite (OMPS) Nadir Mapper (NM) on both the Suomi National Polar-Orbiting Partnership (Suomi-NPP or SNPP) and the Joint Polar-orbiting Satellite System-1 (JPSS-1) satellites, into the future JPSS missions. In addition to the standard OMI/Aura and OMPS/S-NPP SO2 products, SO2 products created under the charter of the Making Earth System Data Records for Use in Research Environments (MEaSUREs) project, are also archived at GES DISC, through which NASA enacts to expand understanding the Earth system using consistent data records. The Land Processes Distributed Active Archive Center (LP DAAC) is another EOSDIS's DAAC that provides land data products and operates as a partnership with the U.S. Geological Survey (USGS). The LP DAAC has been archiving the satellite imagery from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard NASA's EOS-Terra satellite, a high spatial resolution (15 meters) and 14 band multispectral instrument. The ASTER imagery is one of the land products contributing to the application for monitoring hot spots and land terrain changes caused by volcanic eruption events. The data potential in GES DISC and LP DAAC to monitor volcanic sources of SO2 and the influence of wind fields on the gas plume spread will be demonstrated with the most recent 2018 May-July Kilauea Volcano eruption.