Environmental Barrier Coatings (EBCs) have emerged as a promising means of protecting silicon based ceramic matrix composite (CMC) components for high temperature applications (e.g., aircraft engines). EBCs are often used to protect an underlying material (substrate) such as silicon carbide from extreme thermal/chemical environments. In a typical CMC/EBC system, an EBC may or may not be adhered to an underlying substrate with a bond coat (e.g., silicon). Irrespective, systems that utilize EBCs are susceptible to a number of failure modes including oxidation/delamination, recession, chemical attack and dissolution, thermomechanical degradation, erosion, and foreign object damage. Current work at NASA Glenn Research Center is aimed at addressing these failure modes in EBC systems and developing robust analysis tools to aid in the design process. The Higher-Order Theory for Functionally Graded Materials (HOTFGM), a precursor to the High-Fidelity Generalized Method of Cells micromechanics approach, was developed to investigate the coupled thermo-mechanical behavior of functionally graded composites and will be used herein to assess the development and growth of a low-stiffness thermally grown oxide (TGO) layer in EBC/CMC systems without a silicon bond coat. To accomplish this a sensitivity study is conducted to examine the influence of uniformly and nonuniformly grown oxide layer on the associated driving forces leading to mechanical failure (spallation) of EBC layer when subjected to isothermal loading.