We present a high-order finite-element method for moving body and fluid/structure interaction problems. Our solution strategy is based on a space-time discontinuous Galerkin (DG) spectral-element discretization which extends to arbitrary order of accuracy. The space-time DG discretization is a natural choice for moving body and fluid-structure interaction problems as moving surfaces are incorporated simply by considering curved space-time elements whose space-time faces align with the moving body. We present a discontinuous-Galerkin in time discretization for six-degree of motion modeling of rigid bodies, and a continuous-Galerkin discretization for equations of linear elasticity to generate curved space-time meshes. Numerical results for several simple 2D test cases are presented in order to verify the implementation of the different models. Finally we present a preliminary dynamic simulation of a parachute.