科技报告详细信息
Evaluation of a Thermodynamic Ice Crystal Icing Model Using Experimental Ice Accretion Data
Bartkus, Tadas P ; Struk, Peter M ; Tsao, Jen-Ching
关键词: ENERGY BUDGETS;    THERMODYNAMICS;    TURBOFAN ENGINES;   
RP-ID  :  E-19518,GRC-E-DAA-TN55658
学科分类:航空航天科学
美国|英语
来源: NASA Technical Reports Server
PDF
【 摘 要 】

This paper presents the evaluation of a thermodynamic ice crystal icing model, previously presented to describe the possible mechanisms of icing within the core of a turbofan jet engine. It has been proposed that there are two types of distinct ice accretions based on a surface energy balance: freeze-dominated icing and melt-dominated icing. In the former, ice accretion occurs where a freeze fraction (0 to 1) of melted ice crystals freezes on a surface, along with the existing ice of the impinging water and ice mass. This freeze-dominated icing is characterized by having strong adhesion to the surface. In the latter, icing occurs from accumulated unmelted ice on a surface, where a melt fraction (0 to 1) dictates the amount of unmelted impinged ice. This melt-dominated icing is characterized by weakly bonded surface adhesion. The experimentally observed ice growth rates suggest that only a small fraction of the impinging ice remains on the surface, implying a mass loss mechanism such as splash, runback, bounce, or erosion. This mass loss parameter must be determined in conjunction with the fraction of freezing liquid water or fraction of melting ice on an icing surface. This loss parameter, however, along with the freeze and melt fraction, are the only experimental parameters that are currently not measured directly. Using reported icing growth rates from published ice crystal icing experiments, a methodology is proposed to determine these unknown parameters. This work takes reported ice accretion data from tests conducted by the National Aeronautics and Space Administration (NASA) in 2016 and tests NASA collaborated on with the National Research Council (NRC) of Canada in 2012 that examined the fundamental physics of ice crystal icing. Those research efforts sought to generate icing conditions representative of those that occur inside a jet engine when ingesting ice crystals. This paper presents the fundamental equations of the thermodynamic model, the methodology used to determine the aforementioned unknown icing parameters, and results from model evaluation using experimental data. In addition, this paper builds on the previously proposed model by adding a transient conduction term to explain ice growth behavior at the onset of experimental tests that was observed to be different from steady-state ice growth that occurred later in the test run.With the addition of this energy term, this becomes a quasi-steady model. A key finding from this work suggests that mass loss fractions can exceed 0.90 for steady ice growth periods. In addition, due to conductive heat fluxes when using a warmer-than-freezing airfoil, lower mass loss fraction values were calculated during the initial transient period.

【 预 览 】
附件列表
Files Size Format View
20180004284.pdf 1159KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:8次