科技报告详细信息
Shrouded CMC Rotor Blades for High Pressure Turbine Applications
Boyle, Robert J ; Agricola, Lucas M ; Parikh, Ankur H ; Ameri, Ali A ; Nagpal, Vinod K
关键词: NAVIER-STOKES EQUATION;    SHROUDS;    TURBINE BLADES;    CENTRIFUGAL FORCE;    MATRIX MATERIALS;    THICKNESS;    STRUCTURAL ANALYSIS;    PRESSURE DISTRIBUTION;   
RP-ID  :  GRC-E-DAA-TN57524
学科分类:航空航天科学
美国|英语
来源: NASA Technical Reports Server
PDF
【 摘 要 】

The density of Ceramic Matrix Compos-ite(CMC) materials is approximately 1/3 the density of metals currently used for High Pressure Turbine(HPT) blades. A lower density, and consequently lower centrifugal stresses, increases the feasibility of shrouding HPT blades. Shrouding HPT blades improves aerodynamic eciency, especially for low aspect ratio turbine blades. This paper explores aerodynamic and structural issues associated with shrouding HPT rotor blades. Detailed Navier-Stokes analysis of a rotor blade showed that shrouding improved blade row aerodynamic eciency by 1.3%, when the clearance was 2% of the blade span. Recessed casings were used. Without a shroud the depth of the recess equaled the clearance. With a shroud the recess depth increased by the shroud thickness, which included a knife seal. There was good agreement between the predicted stage eciency for the unshrouded blades and the experimentally measured efficiency. Structural analysis showed a strong interaction between stresses in the shroud and peak stresses at the hub of the blade. A thin shroud of uniform thickness only moderately increased maximum blade stress, but there were very high stresses in the shroud itself. Increasing shroud thickness reduced stresses in the shroud, but increased blade stresses near the hub. A single knife seal added to the thin shroud noticeably decreased maximum shroud stress, without increasing maximum blade stress. Maximum stresses due to pressure loads and combined pressure and centrifugal loads were nearly the same as the maximum stresses for individual pressure or cen-trifugal loads. Stresses due to a 100K temperature

【 预 览 】
附件列表
Files Size Format View
20180006891.pdf 1158KB PDF download
  文献评价指标  
  下载次数:36次 浏览次数:33次