科技报告详细信息
A Conservative, Scalable, Space-Time Blade Element Rotor Model for Multi-Rotor Vehicles
Chiew, Jonathan ; Aftosmis, Michael J
关键词: CARTESIAN COORDINATES;    COMPUTATIONAL GRIDS;    CONVERGENCE;    HOVERING;    ROTORS;    SIMULATION;    THRUST;    TORQUE;   
RP-ID  :  ARC-E-DAA-TN45938
学科分类:航空航天科学
美国|英语
来源: NASA Technical Reports Server
PDF
【 摘 要 】

The development of a parallel blade-element rotor model and its implementation into an adaptive Cartesian method is described. The unsteady version of the rotor model applies a body force to all cells contained in the swept space-time volume at each timestep and special care is taken to maintain axisymmetry on the Cartesian grid. Mesh convergence of rotor thrust and torque is obtained with around 10000 cells in the disk for the steady model. Parallelization is accomplished using OpenMP and the rotor force computation is distributed across all available nodes. Simulations of an isolated XV-15 rotor in hover show good correlation with experimental data and predictions of multi-rotor thrust variation closely match previous high fidelity simulations. The final paper will also include results from the unsteady rotor model and parallel scaling tests.

【 预 览 】
附件列表
Files Size Format View
20190028755.pdf 348KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:3次