Approach and landing is the most common phase of flight for aviation accidents, accounting annually for approximately 65 percent of all accidents. A Flight Safety Foundation study of 16 years of runway excursions determined that 83 percent could have been avoided with a decision to go around. In other words, 54 percent of all accidents could potentially be prevented by going around. A critical industry policy designed to help prevent such accidents is the go-around policy. However, the collective industry performance of complying with go-around policies is extremely poor and only about three percent of unstable approaches result in a go-around. Improving the go-around compliance rate holds tremendous potential in reducing approach and landing accidents. There are many reasons for flight crews ignoring go-around policies related to pilot judgement and company policies. Examples are the collective industry norm to accept the noncompliance of go-around policies, management being disengaged from go-around noncompliance, and pilot fatigue and lack of situational awareness. One of the biggest factors is that pilots see current stabilized-approach criteria as too complex and restrictive for the operational environment. Following the American Airlines 1420 accident (Little Rock, 1999), where the aircraft overran the runway upon landing and crashed, the National Transportation Safety Board (NTSB) recommended that the Federal Aviation Administration (FAA) define detailed parameters for a stabilized approach, and develop detailed criteria indicating when a go-around should be performed. The experiment discussed in this presentation is the first step towards developing these go-around criteria for commercial transport aircraft.