科技报告详细信息
Increasing Flight Software Reuse with OpenSatKit
McComas, David
关键词: APPLICATIONS PROGRAMS (COMPUTERS);    COMMAND AND CONTROL;    FLIGHT CONTROL;    SYSTEMS INTEGRATION;    KITS;    OPEN SOURCE LICENSING (COMPUTERS);    PROVING;    ARCHITECTURE (COMPUTERS);    SIMULATORS;    MISSION PLANNING;    EARTH ORBITS;   
RP-ID  :  GSFC-E-DAA-TN49054
美国|英语
来源: NASA Technical Reports Server
PDF
【 摘 要 】

In January 2015 the NASA Goddard Space Flight Center (GSFC) released the Core Flight System (cFS) as open source under the NASA Open Source Agreement (NOSA) license. The cFS is based on flight software (FSW) developed for 12 spacecraft spanning nearly two decades of effort and it can provide about a third of the FSW functionality for a low-earth orbiting scientific spacecraft. The cFS is a FSW framework that is portable, configurable, and extendable using a product line deployment model. However, the components are maintained separately so the user must configure, integrate, and deploy them as a cohesive functional system. This can be very challenging especially for organizations such as universities building cubesats that have minimal experience developing FSW. Supporting universities was one of the primary motivators for releasing the cFS under NOSA. This paper describes the OpenSatKit that was developed to address the cFS deployment challenges and to serve as a cFS training platform for new users. It provides a fully functional out-of-the box software system that includes NASA's cFS, Ball Aerospaceâ€"TM"s command and control system COSMOS, and a NASA dynamic simulator called 42. The kit is freely available since all of the components have been released as open source. The kit runs on a Linux platform, includes 8 cFS applications, several kit-specific applications, and built in demos illustrating how to use key application features. It also includes the software necessary to port the cFS to a Raspberry Pi and instructions for configuring COSMOS to communicate with the target. All of the demos and test scripts can be rerun unchanged with the cFS running on the Raspberry Pi. The cFS uses a 3-tiered layered architecture including a platform abstraction layer, a Core Flight Executive (cFE) middle layer, and an application layer. Similar to smart phones, the cFS application layer is the key architectural feature for userâ€"TM"s to extend the FSW functionality to meet their mission-specific requirements. The platform abstraction layer and the cFE layers go a step further than smart phones by providing a platform-agnostic Application Programmer Interface (API) that allows applications to run unchanged on different platforms. OpenSatKit can serve two significant architectural roles that will further help the adoption of the cFS and help create a community of users that can share assets. First, the kit is being enhanced to automate the integration of applications with the goal of creating a virtual cFS 'App Store'. Second, a platform certification test suite can be developed that would allow users to verify the port of the cFS to a new platform. This paper will describe the current state of these efforts and future plans.

【 预 览 】
附件列表
Files Size Format View
20180001738.pdf 540KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:22次