科技报告详细信息
Characterizing Permafrost Active Layer Dynamics and Sensitivity to Landscape Spatial Heterogeneity in Alaska
Yi, Yonghong ; Kimball, John S ; Chen, Richard H ; Moghaddam, Mahta ; Reichle, Rolf H ; Mishra, Umakant ; Zona, Donatella ; Oechel, Walter C
关键词: ALASKA;    ARCTIC REGIONS;    HETEROGENEITY;    MELTING;    MODELS;    PERMAFROST;    SOILS;    CLIMATE;    ECOSYSTEMS;    IN SITU MEASUREMENT;    REMOTE SENSING;   
RP-ID  :  GSFC-E-DAA-TN51739
学科分类:地球科学(综合)
美国|英语
来源: NASA Technical Reports Server
PDF
【 摘 要 】

An important feature of the Arctic is large spatial heterogeneity in active layer conditions, which is generally poorly represented by global models and can lead to large uncertainties in predicting regional ecosystem responses and climate feedbacks. In this study, we developed a spatially integrated modelling and analysis framework combining field observations, local scale (~ 50 m resolution) active layer thickness (ALT) and soil moisture maps derived from airborne low frequency (L+P-band) radar measurements, and global satellite environmental observations to investigate the ALT sensitivity to recent climate trends and landscape heterogeneity in Alaska. Modelled ALT results show good correspondence with in situ measurements in higher permafrost probability (PP ≥ 70%) areas (n = 33, R = 0.60, mean bias = 1.58 cm, RMSE = 20.32 cm), but with larger uncertainty in sporadic and discontinuous permafrost areas. The model results also reveal widespread ALT deepening since 2001, with smaller ALT increases in northern Alaska (mean trend = 0.32 +/- 1.18 cm yr-1) 20 and much larger increases (> 3 cm yr-1) across interior and southern Alaska. The positive ALT trend coincides with regional warming and a longer snow-free season (R = 0.60 +/- 0.32). A spatially integrated analysis of the radar retrievals and model sensitivity simulations demonstrated that uncertainty in the spatial and vertical distribution of soil organic carbon (SOC) was the largest factor affecting modeled ALT accuracy, while soil moisture played a secondary role. Potential improvements in characterizing SOC heterogeneity, including better spatial sampling of soil conditions and advances in remote sensing of SOC and soil moisture, will enable more accurate predictions of active layer conditions and refinement of the modelling framework across a larger domain.

【 预 览 】
附件列表
Files Size Format View
20180004139.pdf 1270KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:8次