科技报告详细信息
Commissioning a Vibrating Wire System for Quadrupole Fiducialization
Levashov, Michael Y
SLAC National Accelerator Laboratory
关键词: Wires;    Light Sources;    Xfel;    43 Particle Accelerators;    Quadrupoles;   
DOI  :  10.2172/993722
RP-ID  :  SLAC-TN-10-046
RP-ID  :  AC02-76SF00515
RP-ID  :  993722
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】
Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of the quadrupoles. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing such a system. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). A previous study investigated the error associated with each step by using a permanent quadrupole magnet on an optical mover system. The study reported an error of 11{micro}m for step 1 and a repeatability of 4{micro}m for step 2. However, the set up used a FARO arm to measure tooling balls and didn't allow to accurately check step 2 for errors; an uncertainty of 100{micro}m was reported. Therefore, even though the repeatability was good, there was no way to check that the error in step 2 was small. Following the recommendations of that study, we used a CMM (Coordinate Measuring Machine) instead of the FARO arm for measuring the tooling balls. In addition, a roller cam positioner system replaced the optical movers for moving the quadrupole. With the exception of the quadrupole itself, the system was identical to what will be used in fiducializing the undulator quadrupoles. In this study, we investigate the new vibrating wire set up, including the error associated with each step of fiducialization. A vibrating wire system was constructed to fiducialize the quadrupoles between undulator segments in the LCLS. This note is a continuation of previous work to study the ability of the system to fulfill the fiducialization requirements.
【 预 览 】
附件列表
Files Size Format View
993722.pdf 3696KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:33次