A modal approach to modeling spatially distributed vibration energy dissipation. | |
Segalman, Daniel Joseph | |
Sandia National Laboratories | |
关键词: Oscillation Modes; Amplitudes; Energy Losses; Approximations; Simulation; | |
DOI : 10.2172/993326 RP-ID : SAND2010-4763 RP-ID : AC04-94AL85000 RP-ID : 993326 |
|
美国|英语 | |
来源: UNT Digital Library | |
【 摘 要 】
The nonlinear behavior of mechanical joints is a confounding element in modeling the dynamic response of structures. Though there has been some progress in recent years in modeling individual joints, modeling the full structure with myriad frictional interfaces has remained an obstinate challenge. A strategy is suggested for structural dynamics modeling that can account for the combined effect of interface friction distributed spatially about the structure. This approach accommodates the following observations: (1) At small to modest amplitudes, the nonlinearity of jointed structures is manifest primarily in the energy dissipation - visible as vibration damping; (2) Correspondingly, measured vibration modes do not change significantly with amplitude; and (3) Significant coupling among the modes does not appear to result at modest amplitudes. The mathematical approach presented here postulates the preservation of linear modes and invests all the nonlinearity in the evolution of the modal coordinates. The constitutive form selected is one that works well in modeling spatially discrete joints. When compared against a mathematical truth model, the distributed dissipation approximation performs well.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
993326.pdf | 1742KB | download |