科技报告详细信息
Ultrafast probing of the x-ray-induced lattice and electron dynamics in graphite at atomic-resolution
Hau-Riege, S
Lawrence Livermore National Laboratory
关键词: Spectrometers;    Thomson Scattering;    Personnel;    Scattering;    Plasma;   
DOI  :  10.2172/991518
RP-ID  :  LLNL-TR-458811
RP-ID  :  W-7405-ENG-48
RP-ID  :  991518
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

We used LCLS pulses to excite thin-film and bulk graphite with various different microstructures, and probed the ultrafast ion and electron dynamics through Bragg and x-ray Thomson scattering (XRTS). We pioneered XRTS at LCLS, making this technique viable for other users. We demonstrated for the first time that the LCLS can be used to characterize warm-dense-matter through Bragg and x-ray Thomson scattering. The warm-dense-matter conditions were created using the LCLS beam. Representative examples of the results are shown in the Figure above. In our experiment, we utilized simultaneously both Bragg and two Thomson spectrometers. The Bragg measurements as a function of x-ray fluence and pulse length allows us to characterize the onset of atomic motion at 2 keV with the highest resolution to date. The Bragg detector was positioned in back-reflection, providing us access to scattering data with large scattering vectors (nearly 4{pi}/{lambda}). We found a clear difference between the atomic dynamics for 70 and 300 fs pulses, and we are currently in the process of comparing these results to our models. The outcome of this comparison will have important consequences for ultrafast diffractive imaging, for which it is still not clear if atomic resolution can truly be achieved. The backward x-ray Thomson scattering data suggests that the average graphite temperature and ionization was 10 eV and 1.0, respectively, which agrees with our models. In the forward scattering data, we observed an inelastic feature in the Thomson spectrum that our models currently do not reproduce, so there is food for thought. We are in the process of writing these results up. Depending on if we can combine the Bragg and Thomson data or not, we plan to publish them in a single paper (e.g. Nature or Science) or as two separate papers (e.g. two Phys. Rev. Lett.). We will present the first analysis of the results at the APS Plasma Meeting in November 2010. We had a fantastic experience performing our experiment at the LCLS, and we are grateful to the beamline scientists and all the support personnel for enabling this experiment. A major hurdle was the very short transition time of two days, which despite all our preparations did not give us sufficient time to test the full system before the start of the beam time. We further were not able to make optimal use of the beam time since we had to exchange samples in the middle of the 36-hours shift. An additional 12-hours break could have avoided this. Finally, our experiment would have benefitted from the best possible focus, but 5 shifts do not allow performing the experiment while fine-tuning the focusing optics.

【 预 览 】
附件列表
Files Size Format View
991518.pdf 1528KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:4次