科技报告详细信息
An optimization approach for fitting canonical tensor decompositions.
Dunlavy, Daniel M. (Sandia National Laboratories, Albuquerque, NM) ; Acar, Evrim ; Kolda, Tamara Gibson
Sandia National Laboratories
关键词: Data Analysis;    99 General And Miscellaneous//Mathematics, Computing, And Information Science;    Optimization;    Calculation Methods;    Tensors;   
DOI  :  10.2172/978916
RP-ID  :  SAND2009-0857
RP-ID  :  AC04-94AL85000
RP-ID  :  978916
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

Tensor decompositions are higher-order analogues of matrix decompositions and have proven to be powerful tools for data analysis. In particular, we are interested in the canonical tensor decomposition, otherwise known as the CANDECOMP/PARAFAC decomposition (CPD), which expresses a tensor as the sum of component rank-one tensors and is used in a multitude of applications such as chemometrics, signal processing, neuroscience, and web analysis. The task of computing the CPD, however, can be difficult. The typical approach is based on alternating least squares (ALS) optimization, which can be remarkably fast but is not very accurate. Previously, nonlinear least squares (NLS) methods have also been recommended; existing NLS methods are accurate but slow. In this paper, we propose the use of gradient-based optimization methods. We discuss the mathematical calculation of the derivatives and further show that they can be computed efficiently, at the same cost as one iteration of ALS. Computational experiments demonstrate that the gradient-based optimization methods are much more accurate than ALS and orders of magnitude faster than NLS.

【 预 览 】
附件列表
Files Size Format View
978916.pdf 689KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:16次